

Search

Product Families Product Dimensions Spec Assistance

Ask the Pipe Doctor

Liner Types Chem. Resistance CONQUEST[®]

Product Specs Special Applications

Tech Library

Tools & Fabrication Inst. & Maintenance **US/Global Sales**

Contacts

FAQ

Design Manual

Diaphragm Valve Sizing

Flow computations

Since rate of flow depends upon the pressure drop through the valve, the C_V values are given at vaious stages of the opening. The C_V is the valve coefficient of the flow and represents the flow of water through the valve in gpm with a 1 psig pressure drop. To calculate flow with the C_V table, use 100% opening for ON-OFF service and 50% opening for THROTTLING service.

LIQUID FLOW FORMULA

At pressure drops of other than 1 psig

$$Q = C_V(P/G)^{1/2}$$

Where:

Q = actual flow (gpm)

P = actual pressure drop (psig)

G = specific gravity

 C_V = flow factor from table

GAS FLOW FORMULA

Q = 1360
$$C_V(P/GT)^{1/2}$$
 $\begin{bmatrix} P_1 + P_2 \\ \hline 2 \end{bmatrix}_{1/2}$

Where:

Q = volumetric flow (scfh)

G = specific gravity of gas (air at 0 psig and 60°F is 1.0)

T = absolute temperature of flowing medium (°F + 460)

 P_1 = inlet pressure (saia)

 P_2 = outlet pressure (psia)

 $P = (P_1 - P_2)$ pressure drop (psia) $C_V =$ flow factor from table

Liquid velocity

Liquid velocity is a very important design consideration. In order to assure maximum life of liner and diaphgram, it is recommended that velocity be kept to a maximum of 10 feet per second over the weir. When handling abrasive liquids, special considerations are necessary. Consult you Resistoflex representative.

LIQUID VELOCITY FORMULA

V = .321 (Q/A)

Where:

V = velocity (ft/s)

Q = flow (gpm)

A = Area over wier from table

Valve coefficient of flow									
Valve size ¹ inches	C _V flow factors								
	% valve opening								
	25%	50%	75%	100%					
1	5.9	7.1	7.1	7.2					
1 1/2	15.0	21.8	23.2	24.4					
2	34.3	46.3	46.5	46.7					
2 1/2 ²		_	_	68.0					
3	58.0	93.0	101.0	107.0					
4	115.0	117.0	213.0	233.0					
6	252.0	334.0	378.0	403.0					
8	675.0	1035.0	1062.5	1082.5					

¹The 1, 1 1/2, 2, 3, 4, 6, and 8-inch sizes were tested by an independent testing laboratory in accordance with Fluid Controls Institute, Inc., "Recommended Voluntary Standards for Measurement Procedures for Determining Control Valve Flow Capacity."

 $^2\mbox{The C}^{\mbox{V}}$ for the 2 1/2-inch size was calculated by an area relationship assuming constant velocity.

Area over the wier Dimensions: square inches											
Valve Size inches	% Open										
	10	20	30	40	50	60	70	80	90	100	
1	.10	.18	.25	.32	.39	.45	.51	.56	.61	.64	
1 1/2	.23	.42	.61	.80	.96	1.10	1.25	1.38	1.50	1.58	
2	.40	.72	1.06	1.32	1.63	1.88	2.10	2.32	2.52	2.66	
2 1/2	.56	1.06	1.53	1.96	2.36	2.74	3.08	3.40	3.63	3.88	
3	.86	1.62	2.32	2.95	3.56	4.18	4.66	5.12	5.58	5.90	
4	1.40	2.66	3.78	4.84	5.80	6.80	7.62	8.40	9.09	9.60	
6	3.20	5.90	8.20	10.50	12.60	14.62	16.41	18.25	19.72	21.00	
8	5.92	11.41	16.25	20.62	25.00	29.00	32.80	36.00	38.80	41.00	

"This page is a machine translation of the source page, which is written in English. This translation is intended to provide a general idea of the page's content, and is not guaranteed for accuracy."

Home | About Us | Contact Us | Careers | Terms and Conditions | Links

Feedback | Privacy Statement | Terms of Use © Copyright 2000 Crane Co. All rights reserved.